MIDTERM 2 (VOJTA) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) Note: The (2, 5)th entry of A should be a -4, not a 4 (the minus-sign is faint!)

Row-reduce A until you get:

		$\begin{bmatrix} 3\\0\\0\\0\\0\\0\end{bmatrix}$	$18 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$10 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0$	$2 \\ 11 \\ 3 \\ 0 \\ 0 \\ 0$	$\begin{bmatrix} 7 \\ 19 \\ -13 \\ 0 \\ 0 \end{bmatrix}$
(a)]	Basis for <i>R</i>	low(A):				
		($\begin{bmatrix} 3\\18\\10\\2\\7\end{bmatrix}$		$\begin{bmatrix} 0 \\ 0 \\ 4 \\ 1 \\ 19 \end{bmatrix},$	$\begin{bmatrix} 0\\0\\0\\3\\-13 \end{bmatrix} \}$
(b) <u>Basis for $Col(A)$:</u>						
		$\mathcal{B} = \left\{$	$\begin{bmatrix} 3\\1\\2\\-1\\6\end{bmatrix}$		$\begin{bmatrix} 10\\2\\8\\0\\12 \end{bmatrix}$,	$\begin{bmatrix} 7\\-4\\11\\7\\-11 \end{bmatrix} \}$
[]	$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$					

(2) $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2\\4\\3 \end{bmatrix}$

Think of this as a change-of-basis problem!

Let $P = [\mathbf{b_1} \ \mathbf{b_2} \ \mathbf{b_3}] = [[\mathbf{b_1}]_{\mathcal{E}} \ [\mathbf{b_2}]_{\mathcal{E}} \ [\mathbf{b_3}]_{\mathcal{E}}]$ Then: $P = \mathcal{E} \stackrel{P}{\leftarrow} \mathcal{B}$.

Hence:

$$\mathbf{x} = [\mathbf{x}]_{\mathcal{E}} = \mathcal{E} \stackrel{P}{\leftarrow} \mathcal{B} [\mathbf{x}]_{\mathcal{B}} = P [\mathbf{x}]_{\mathcal{B}}$$

Date: Friday, October 21st, 2011.

So:

$$[\mathbf{x}]_{\mathcal{B}} = P^{-1}\mathbf{x}$$

(3) $y = 2x - \frac{1}{2}$

In other words, try to solve $A\mathbf{x} = \mathbf{b}$ in the least squares sense, where:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 5 \\ 8 \end{bmatrix}$$

(4)
$$\mathcal{B} = \left\{ \frac{1}{\sqrt{30}} \begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}, \frac{1}{\sqrt{13}} \begin{bmatrix} -2\\ 2\\ -2\\ 1 \end{bmatrix} \right\}$$

CAREFUL! You should get $w_3 = 0$, but do **NOT** include it in your basis! What this says is that the firs two vectors are linearly independent, but the third one isn't!

(5) 38

(6) (a)
$$\mathcal{B} = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

(b) 5

(7) This is **HARD**!!!

Suppose v is an eigenvector of B with eigenvalue λ . Then $Bv = \lambda v$. But then:

$$A\mathbf{v} = B^2 \mathbf{v} = B(\lambda \mathbf{v}) = \lambda B \mathbf{v} = \lambda \lambda \mathbf{v} = \lambda^2 \mathbf{v}$$

So if v is an eigenvector of A, then v is also an eigenvector of B, but with eigenvalue λ^2 .

But if you do the calculations, you find that A has eigenvalues 1 and 4 with corresponding eigenvectors:

2

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Hence, by what we said before, B has the same eigenvectors, but with eigenvalues $\sqrt{1} = 1$ and $\sqrt{4} = 2$.

This means that:

$$B = PDP^{-1} = \begin{bmatrix} 3 & -2\\ 1 & 0 \end{bmatrix}$$

Where $P = \begin{bmatrix} 1 & 2\\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix}$

Note: The point is: If $A = PDP^{-1}$, then $A^k = PD^kP^{-1}$, and this holds for **ANY** k, even fractions! In this problem, you found $B = \sqrt{A} = A^{\frac{1}{2}} = PD^{\frac{1}{2}}P^{-1}$.