MIDTERM 2 (VOJTA) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) Note: The $(2,5)$ th entry of A should be a -4 , not a 4 (the minus-sign is faint!) Row-reduce A until you get:

$$
\left[\begin{array}{ccccc}
3 & 18 & 10 & 2 & 7 \\
0 & 0 & 4 & 11 & 19 \\
0 & 0 & 0 & 3 & -13 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Basis for $\operatorname{Row}(A)$:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
3 \\
18 \\
10 \\
2 \\
7
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
4 \\
11 \\
19
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
3 \\
-13
\end{array}\right]\right\}
$$

(b) Basis for $\operatorname{Col}(A)$:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
3 \\
1 \\
2 \\
-1 \\
6
\end{array}\right],\left[\begin{array}{c}
10 \\
2 \\
8 \\
0 \\
12
\end{array}\right],\left[\begin{array}{c}
7 \\
-4 \\
11 \\
7 \\
-11
\end{array}\right]\right\}
$$

(2) $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-2 \\ 4 \\ 3\end{array}\right]$

Think of this as a change-of-basis problem!
Let $\mathbf{P}=\left[\begin{array}{lll}\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}} & \mathbf{b}_{\mathbf{3}}\end{array}\right]=\left[\begin{array}{lll}{\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{E}}} & {\left[\mathbf{b}_{\mathbf{2}}\right]_{\mathcal{E}}} & {\left[\mathbf{b}_{\mathbf{3}}\right]_{\mathcal{E}}}\end{array}\right]$
Then: $P=\mathcal{E} \stackrel{P}{\leftarrow} \mathcal{B}$.
Hence:

$$
\mathbf{x}=[\mathbf{x}]_{\mathcal{E}}=\mathcal{E} \stackrel{P}{\leftarrow} \mathcal{B}[\mathbf{x}]_{\mathcal{B}}=P[\mathbf{x}]_{\mathcal{B}}
$$

So:

$$
[\mathbf{x}]_{\mathcal{B}}=P^{-1} \mathbf{x}
$$

(3) $y=2 x-\frac{1}{2}$

In other words, try to solve $A \mathbf{x}=\mathbf{b}$ in the least squares sense, where:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
2 \\
3 \\
5 \\
8
\end{array}\right]
$$

(4) $\mathcal{B}=\left\{\frac{1}{\sqrt{30}}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], \frac{1}{\sqrt{13}}\left[\begin{array}{c}-2 \\ 2 \\ -2 \\ 1\end{array}\right]\right\}$

CAREFUL! You should get $\mathbf{w}_{\mathbf{3}}=\mathbf{0}$, but do NOT include it in your basis! What this says is that the firs two vectors are linearly independent, but the third one isn't!
(5) 38
(6) (a) $\mathcal{B}=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
(b) 5

(7) This is HARD!!!

Suppose \mathbf{v} is an eigenvector of B with eigenvalue λ. Then $B \mathbf{v}=\lambda \mathbf{v}$.
But then:

$$
A \mathbf{v}=B^{2} \mathbf{v}=B(\lambda \mathbf{v})=\lambda B \mathbf{v}=\lambda \lambda \mathbf{v}=\lambda^{2} \mathbf{v}
$$

So if \mathbf{v} is an eigenvector of A, then \mathbf{v} is also an eigenvector of B, but with eigenvalue λ^{2}.

But if you do the calculations, you find that A has eigenvalues 1 and 4 with corresponding eigenvectors:

Hence, by what we said before, B has the same eigenvectors, but with eigenvalues $\sqrt{1}=1$ and $\sqrt{4}=2$.

This means that:

$$
B=P D P^{-1}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]
$$

Where $P=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right], D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

Note: The point is: If $A=P D P^{-1}$, then $A^{k}=P D^{k} P^{-1}$, and this holds for ANY k, even fractions! In this problem, you found $B=\sqrt{A}=A^{\frac{1}{2}}=P D^{\frac{1}{2}} P^{-1}$.

